光刻机各个发展阶段的尺寸
光刻机各个发展阶段的尺寸?
90年代前半期,光刻开始使用波长365nm i-line,后半期开始使用248nm的KrF激光。激光的可用波长就那么几个,00年代光刻开始使用193nm波长的DUV激光,这就是著名的ArF准分子激光,包括近视眼手术在内的多种应用都应用这种激光,相关激光发生器和光学镜片等都比较成熟。
但谁也没想到,光刻光源被卡在193nm无法进步长达20年。直到今天,我们用的所有手机电脑主芯片仍旧是193nm光源光刻出来的。
90年代末,科学家和产业界提出了各种超越193nm的方案,其中包括157nm F2激光,电子束投射(EPL),离子投射(IPL)、EUV(13.5nm)和X光,并形成了以下几大阵营:
157nmF2:每家都研究,但SVG和尼康离产品化最近。
157nm光会被现有193nm机器用的镜片吸收,光刻胶也要重新研制,所以改造难度极大,而对193nm的波长进步只有不到25%,研发投入产出比太低。ASML收购SVG后获取了反射技术,2003年终于出品了157nm机器,但错过时间窗口完败于低成本的浸入式193nm。
13.5nmEUV LLC:英特尔,AMD,摩托罗拉和美国能源部。ASML、英飞凌和Micron后来加入。
关于EUV,我放到后面在说吧。
1nm接近式X光:日本阵营(ASET, Mitsubishi, NEC, Toshiba, NTT)和 IBM
这算是个浪漫阵营吧,大家就没想过产业化的事
0.004nmEBDW或EPL: 朗讯Bell实验室,IBM,尼康。ASML和应用材料被邀请加入后又率先退出。
这是尼康和ASML对决的选择,尼康试图直接跨越到未来技术击败ASML,但可惜这个决战应该发生在2020年而不是2005年,尼康没有选错技术但是选错了时间。尼康最重要的技术盟友IBM在2001年也分心加入了EUV联盟。
0.00005nmIPL: 英飞凌、欧盟。ASML和莱卡等公司也有参与。
离子光刻从波长来看是最浪漫的,然而光刻分辨率不光由波长决定,还要看NA。人类现有科技可用离子光刻的光学系统NA是0.00001,比193nm的NA=0.5~1.5刚好差10万倍,优势被抵消了。
以上所有努力,几乎全部失败了。
它们败给了一个工程上最简单的解决办法,在晶圆光刻胶上方加1mm厚的水。水可以把193nm的光波长折射成134nm。
浸入式光刻成功翻越了157nm大关,直接做到半周期65nm。加上后来不断改进的高NA镜头、多光罩、FinFET、Pitch-split、波段灵敏的光刻胶等技术,浸入式193nm光刻机一直做到今天的7nm(苹果A12和华为麒麟980)。
2002年台积电的林本坚博士在一次研讨会上提出了浸入式193nm的方案,随后ASML在一年的时间内就开发出样机,充分证明了该方案的工程友好性。
随后,台积电也是第一家实现浸入式量产的公司,随后终于追上之前制程技术遥遥领先的英特尔,林博士因此获得了崇高的荣誉和各种奖项。
MIT的林肯实验室似乎不服气,他们认为自己在2001年就提出了这个浸入式方案。ASML似乎也没有在任何书面说明自己开发是受林博士启发。
其实油浸镜头改变折射率的方式由来已久,产业界争论是谁的想法在先从来不重要,行胜于言。林博士的贡献是台积电和ASML通力合作把想法变成了现实。