如何用深度学习进行语音识别 学习深度学习如何下手
如何用深度学习进行语音识别
深度学习属于机器学习中人工神经网络发展的高级版。语音识别、图像识别也都是属于模式识别的范畴。不管是机器学习还是模式识别也都属于人工智能的分支。几乎人工智能的所有方面都用深度学习,但是深度学习有个前提需要建立深层的神经网络
学习深度学习如何下手
1、机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。 2、深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。 3、机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。 拓展资料: 1、机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。 2、最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
深度学习调参有哪些技巧
通过将神经网络隐藏层的激活神经元以矩阵的形式可视化出来,能够让我们看到一些有趣的insights。在[8]的头部,嵌入了一个web-based的CNN网络的demo,可以看到每个layer activation的可视化效果。在[14]里为几种不同的数据集提供了CNN各个layer activation的可视化效果示例,在里头能够看到CNN模型在Mnist/CIFAR-10这几组数据集上,不同layer activation的图形化效果。